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On H; for small internuclear separation 

Martin Klaus 
Department of Mathematics, Virginia Polytechnic Institute and State University, 
Blacksburg, VA 24061, USA 

Received 5 August 1982; in final form 15 March 1983 

Abstract. We study the behaviour of the electronic energy E ( R )  of the hydrogen molecular 
ion as the internuclear separation R goes to zero. We prove that E ( R )  is not analytic at 
R = 0 and we find its expansion in terms of powers of R and R 2  In R up to order R9(1n R 1 3 .  
This rigorously justifies earlier work by Byers Brown and Steiner. We also give an outline 
of how one can prove non-analyticity by means of a perturbation treatment based on the 
united atom. 

1. Introduction 

The Hamiltonian for the H i  molecule reads (in atomic units) 

R = (R, 0,O). 

Here x denotes the position of the electron. The two nuclei are located at *iR, 
respectively. Let E ( R )  denote the lowest eigenvalue of H ( R ) .  In this paper we will 
take another look at the analytic behaviour of E(R) near R = 0. Our work is based 
on an earlier paper by Byers Brown and Steiner (1966) (henceforth denoted by BBS) 

who discovered the remarkable fact that E ( R )  cannot be expanded in powers of R 
alone, but that logarithms must also be included. Explicitly, 

(1.2) 

The numerical coefficient for R 5  is also known but, to our knowledge, no further 
terms have been calculated previously. The reason why we are not quite satisfied 
with this result is that it has never been justified rigorously. BBS obtain their expansion 
from what appears to be the initial step in an iterative process for finding successive 
approximations to E(R). However, BBS do not prove convergence of this process 
and thus do not have rigorous control on the remainder. The determination of E(R) 
is closely connected with the integration of two ordinary differential equations 
(equations (2.4) and (2.5)) which we get when we separate the Schrodinger equation 
in spheroidal coordinates. It turns out that only equation (2.5) causes problems and, 
indeed, this equation has been disputed in several earlier papers. Concerning this 
matter the reader is referred to the paper by Chakravarty (1939). Prior to BBS it was 
common practice to determine the separation constant in (2.5) from an implicit 
equation involving continued fractions. It is to the merit of BBS that an alternative 
method which is better suited for analytical purposes was proposed. 

The chief goal of this paper is to give a rigorous justification of the method of 
BBS. This will be done in 8 3 where we will prove convergence of the iterative process. 

E(R) = -2+f(2R)2-:(2R)3+~(2R)4-9(2R)5 In R +O(R5). 
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2710 M Klaus 

In 0 2 we separate the variables and replace the Schrodinger equation by a set of 
two ordinary differential equations. We discuss some of their properties which will 
be needed later on. 

In 0 4 we expand E ( R )  up to order R9(ln R ) 3 ,  thereby adding nine more terms 
to those already known. The point is that one only needs the first approximation in 
the iterative process to calculate these terms. This is a consequence of the error 
estimates derived in 0 3. Furthermore, we state a conjecture concerning the general 
nature of the expansion for E ( R ) .  

An alternative approach to our problem does exist which does not use separation 
of variables, namely the perturbation treatment based on the united atom. In fact, it 
was by this method that we were first able to show that E ( R )  is non-analytic. We 
give a summary of our results in 8 5 .  

Finally, we mention that our initial motivation for looking into H i  for small nuclear 
separation was its relation to our recent work on coupling constant thresholds (Klaus 
and Simon 1980). For, by using scaling, H ( R )  is unitarily equivalent to R - ’ f i ( R )  
where 

(1.3) 

and so, as R J. 0, k ( R )  represents a Schrodinger operator in the weak coupling limit. 
However, unlike Klaus and Simon (1980), the potential here is long-range. Therefore, 
we have a definite interest in knowing at least whether or not E ( R )  is analytic. 

g ( R )  = -$A -R (Ix - i n  / - l+  Ix +$n I-’) n = R / R  

2. Separation of variables 

It is known that the Schrodinger equation 

H R ~  = E @ ) +  (2.1) 

may be separated in spheroidal coordinates 6, 7, (6, such that 

5 = (r l  + r d / R  ( l S C $ < O O )  t7 = ( r l -  r2)/R (-1S7Sl). (2.2) 

Here r l  and r2 denote the distances of the electron from the two nuclei and is the 
azimuthal angle about the axis joining the two nuclei. The ground-state wavefunction 
I) is axially symmetric and can be written as 

cc/ = H ( t l ) X ( 5 ) .  (2.3) 

Then H and X obey the ‘inner’ and ‘outer’ equations 

[ d / d ~ ] ( l  -q2)(dH/dq)-p2(1 - q 2 ) H + C H  = O  (2.4) 

[d/d[](t2- l)(dX/d5)+2~(1+a)5X-p~(5~- l)X-CX=O. (2.5) 

p 2  = - $ R ~ E ( R )  (2.6) 

The parameters p and m are related to E ( R )  and R as follows: 

1 +a = R/p .  (2.7) 

C i n n e r b )  = Couterb ,  a), (2.8) 

The limit R -* 0, E ( R )  -* -2 corresponds to the limit p + 0, a -* 0. The equation 
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where Cinn,, and CO,,,, distinguish the values of the separation constant C as deter- 
mined from (2.4) and (2.5) respectively, is to be regarded as an implicit equation for 
U @ ) .  Once we know IT@) we can find E ( R )  by means of (2.6) and (2.7). Lieb and 
Simon (1978) proved that E ( R )  is a non-decreasing function of R. Hoffmann-Ostenhof 
(1980) proved strict monotonicity for R >O.  When R is small, one can also find upper 
and lower bounds to E ( R )  which show that E ( R )  + 2 vanishes quadratically as R 1 0. 
Grosse et a1 (1978) showed that 

-2 + ; R ~  + o ( R ~ )  S E  s -2 + *  j~ + o ( R ~ ) .  (2.9) 

Thus, without loss the parameter U may be assumed to be positive. 
The properties of the inner equation are well known. We note that &,&I) is 

analytic in a disc of radius approximately 3.17 (Guerrieri and Hunter 1982). 

3. Construction of Cauter 

We first consider CO,,,,. Following BBS (but replacing their variable by x )  we put 

~ ( 5 )  = e-"(1 + ~ ) " F ( x )  (3.1) 

F ( x )  = 1 +U2f(X) (3.2) 

x =(5-1)/(5+1) O s x s l .  (3.3) 

Then equation (2.5) becomes an equation for f, namely 

where 

CO,,,, = ~ ( 1 +  2p) + m 2  - v 2 B .  (3.5) 

We require that 

f (0) = 0 (3.6) 

and that f be bounded. Equation (3.4) will be solved by the method of successive 
approximations. To this end we set 

fo = 0 

and 
(3.7) 

where 

A ( x ) = - 4 p / ( l - x ) - 2 ~ l n  (1-x). 

(3.9) 

(3.10) 
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The idea behind these definitions is the following. Suppose f n P 1  is known and 
bounded in x. Substituting f n - l  for f on the right-hand side of (3.4) and integrating 
we get 

1) du + d  e-A(xi B 
x - = e  

dx 
(3.11) 

where d is an arbitrary constant. The first term on the right-hand side of (3.11) turns 
out to be integrable at x = 1 whereas e-A(x) is non-integrable there. Thus, we set 
d = 0. On dividing (3.1 1) by x and integrating such that f(0) = 0, we obtain 

provided the z integral exists at z = 0. Now we simply choose B such that this is the 
case. Setting 

B 
) ( ~ ~ f , - ~ ( u ) +  1) du = 0 A ( u i  ___-- 

1 

I, e i ( 1 - U ) ’  l - U  
(3.13) 

and solving this equation for B = B, we obtain (3.8). Substituting B ,  for B in (3.12) 
and calling the left-hand side f n  yields (3.9). This set-up constitutes a convenient 
mathematical formulation of the iterative process proposed by BBS. In contrast to 
BBS we avoid changing back to the variable 5 in order to find B. In the theorem 
below we will establish convergence of the sequences B, and f,. As an essential 
ingredient in the proof we will need a lower bound on p u s  In other words we have 
to prevent p from getting arbitrarily small independently of U .  Therefore, it is 
convenient to introduce the set 

G, = (p, U 10 < p s e - ” ”  , o sc~ s Ilnpl-’} (3.14) 

where (Y is a positive constant on which further restrictions will be placed below. Note 
that O s a s a  in G, and G,.cG, if ( Y ’ < c u .  

Theorem 3.1. Suppose (p, U )  E G, where (Y is sufficiently small. Then 

lim B,(u, p )  = B(a,  p )  = B (3.15) 
,-cc 

(i) 

and 

lim f n  (x 1 = f(x 1 (3.16) 
n - m  

(ii) 

exist. 
In (i) and (ii) convergence is uniform in G,. In (ii) it is in addition uniform with 

respect to x. Moreover, the limiting function f together with the constant B satisfy 
the differential equation (3.4). 

For the proof of the theorem we need some estimates which we will derive first. 
For k = 1,2,  we define 

(3.17) 

Then we have the following proposition. 
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Proposition 3.2. If we let a =a, then we can find positive constants c l ,  c2 ,  dl, d2  such 
that 

(3.18) dllh p 1 s zl s cllln p I 
and 

d z l p  s 1 2  s c z / p  (3.19) 

holds for all values @, a )  E Furthermore, 

6' & dz = (4p)-2""-k r ( 2 u  + k - 1,4p)  ( k  = 1 , 2 )  (3.20) 

where T(y, x )  = 1," e-?'-' dt. 

Proof. Let i k  denote the integral having the same integrand as ZK but with the factor 
' z  deleted. Since i s z  s 1 we have i k  S Z k  s 2 f k ,  so that it suffices to establish (3.18) 
and (3.19) when z k  is replaced by fk. On making the substitutions 4 p / ( l - z ) = x ,  
4p/( l  - U )  = t we obtain 

-1 

To examine the singular behaviour of f k  we restrict the variables x and t to the interval 
[0 ,1]  and replace the exponentials by 1 .  This means we consider 

J S P  J X  

4p -; ( 8 p ) - 2 u  - 1 
k = l  - - !-+ 2a + 1 4 a ( 2 a  + 1 )  

In 8 p  I (8p)2at1(2a + 1)' 2a + 1 
+- k = 2  

1 - ( 8 p y U + l  
(3.22) 

(note that 8p < 1 on G1/4). 

If k = 1 we observe that we can find pl, p z  > 0 such that 

p1 s [(8p)-'" - 1]/2al1n 8pl s p 2  (3.23) 

for all (p, a )  E G1/4. Thus i l  obeys bounds of thefform (3.18). Similarly, if k = 2, we 
have e - ' s p " s  1 if ( P , a ) ~ G 1 / 4 ,  showing that 1, obeys bounds of the form (3.19). 
From these estimates the desired bounds for f k ,  and thus z k ,  follow in an obvious way. 
We omit the details. 

- 

The calculation leading to (3.20) is elementary. This proves the proposition, 

Proof of theorem 3.1. The main effort goes into proving that the denominator in (3.8) 
is bounded away from zero uniformly in n. This will be done by establishing a suitable 
a priori bound on I l f n l l m ( l l f l l o o  = suposxsl I f ( x ) I ) .  In this proof K will be used to denote 
various constants whose precise value is unimportant to us. If we let 0 s x s i  and 
assume (p, a )  E G1/4, then by virtue of (3.13) we may write 

(3.24) 
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(3.25) 

On estimating fn(i) by (3.25) and the integral in (3.26) by means of proposition (3.2) 
we obtain 

(3.27) Ifn(x)I ~K[(IB,I/P) + Iln ~ I l ( ~ ’ I I f n - 1 I I o a +  1) 

which is valid for all x E [0, 11. 
Now suppose that 

U211fn-lIIm< 1. (3.28) 

As we will see below, this is an allowable assumption. Then, by using (3.20) and 
(3.8), we obtain 

(3.29) 

It is easy to see that r ( 2 0  + 1,4p)  3 K and r (2a ,  4p) sKlln pI so that by substituting 
(3.29) in (3.27) and using (3.28) to simplify the result we obtain 

(3.30) 

g(x) =D(p) / ( l  - a 2 x ) .  (3.31) 

Then the equation 

g ( x ) = x  

X *  =[ I  * (1 -4~’D(p))”’] /2~’ .  

has the two solutions 

(3.32) 

(3.33) 

Suppose from now on, that in addition to being less than b, a has been chosen to be 
s o s m a l l t h a t 4 d D ( p ) < l  if ( p , a ) ~ G , . T h e n , s i n c e ( l - x ) ” ~ ~ l - x  i f O s x s 1 , w e  
see that 

(3.34) x- 6 2 0 @ )  = 2K Iln pI 

and 
2 

U x - < l  
-2 Since g‘(x) > 0 for 0 s x < U we conclude that 

(3.35) 

p ( 0 )  < x -  (3.36) 

Since f~ = 0 by definition, (3.28) is satisfied for n = 1. Thus, by (3.30) and (3.36) 
where g[”] denotes the nth iterate of g. Moreover, g‘“’(0) t x- as n + 00. 

l l f l l l m s  g(O)<x-. (3.37) 
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Hence, by virtue of (3.35), assumption (3.28) is again satisfied for n = 2. Hence 

l l f z l lm~g( I l f l l lm)~g(g(0) )<~-  (3.38) 

(3.39) 

(3.40) 

for all n 3 1. Moreover, by (3.29) 

IBfl/J=-KPIlnPI n z l .  (3.41) 

To estimate the difference f, -f,,-', we use (3.24) if O S x  Si and (3.26) if $Gx  G 1. 
Bymeansof theestimateIpnfn-l - B n - l f n - 2 I I m S  IBfl -B,-ljIIfn-zIIm+IB,IIIfn-l -fn-2IIm 

along with (3.18), (3.19), (3.40) and (3.41) we find that 

(3.42) 

where n a 2. 
To estimate 8, -B,-l we write a, (6,) for the numerator (denominator) in (3.8). 

Then B,-B,-l = ( ~ , - a , - ~ ) b , '  +(b,_l-b,)a,-16,'6,!l and since (b , ' (SKp ,  

Ka2p-'llf,-, - f f l - 2 1 1 0 0  we conclude that 

lIffl -ffl -1IIm K (din p I IIffl-i -fn-ZIIm + P  - ' IBn - B n - l i )  

Ib,'b,!llsKp 2 , (u , - i (SKllnp( ,  la,-an-llSKc211npIIlfn-,-ffl-*11m and \ b f l - b n - i l s  

I B n  - ~ , - i l  ~Kpa211npIlIffl-l-f,-zIIm n 2 2 .  (3.43) 

IIfn -ffl-iIlmSKa2/ln plIIfn-1 -fn-ZIIm. (3.44) 

Substituting (3.43) in (3.42) yields 

For the rest of the proof the letter K will be used exclusively to denote the constant 
in (3.44) and we will use subscripts to denote any other constants. Iterating (3.44) gives 

IIf, - fn- l I Im ( K d n  PI)"-'IIflIIm SKllln pl(Kc2/ln PI)"-' n s l  (3.45) 

where in the last step we used (3.40) with n = 1. 
Combining (3.45) and (3.43) one finds 

(B, - ~ , - 1 1  s K2pIln pl(Ka211n p I)'-' n 2 2 .  (3.46) 

We see that f,, and B, converge (convergence is governed by a geometric series) if 
Kcr2/ln p1< 1. This condition will be met if, in addition to our previous restrictions, 
we choose a <K-'. Uniform convergence of B, with respect to (p, (T) E G, is immedi- 
ate since pllnpl is bounded. In the case of f ,  we write the right-hand side of (3.45) 
as Kl(a'"-'"2(ln p l ) (K(~~ '~1ln  pi)"-'  and note that now a'"-"'211npl s 1 (n z 3). Hence 
the sequence f,, also converges uniformly in G,. That the limits f and B satisfy the 
differential equation (3.4) follows by standard arguments from (3.9) which also holds 
in the limit. This proves theorem 3.1. 

4. Expansion of E ( R )  and a conjecture 

The error estimate 
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is an immediate consequence of (3.46). In particular 

B = B ,  + O(a2p(In p ) ' ) .  (4.2) 

Since U = Ob2)  for the solution of (2.8), the error in (4.2) will translate into an error 
of O(p5(lnp)2) in the subsequent expansion for u(p) and this, in turn, will give rise 
to an error of O(R9(lnR)2)  in the expansion for E(R). The order of this error will 
be the criterion for truncating the following expansion (4.6) for B1. Setting x = 4p, 
y = 2 a  we have by (3.8) and (3.20) 

m 

B~ = ( x  I, e - ? - '  dr)/( Jxm e-'t' dr). 

Moreover, we have the following series representations. 
m 1 

e-'t' dt = lo e-'t' dt - x ' + l  lo e-sxsy ds 

(4.3) 

(4.4) 

and 

(4.6) 

The first two series expansions are immediate consequences of the fact that the integrals 
in the middle members of equations (4.4) and (4.5) are analytic at x = y = 0 and that 
x v  can be expanded in powers of y In x .  If we set T = y In x and pretend that x ,  y and 
T are independent complex variables, the series (4.4) and (4.5) converge for 1x1 < 00, 

ly 1 < 1, 171 <CO. We now claim that the series in (4.6) converges for all x ,  y such that 
(p, a )  = (x/4, y/2) E G, when a is sufficiently small. The point to be noted is that 
SUP{/T~: (p, a )  E G,} = 2 (if a < (2 In 2)-' so that 4p < 1) and thus does not get smaller 
with a.  But thanks to the extra factor x in x '+ '  = x  er, the value of the integral in 
(4.4) is arbitrarily close to 1 if x and y are sufficiently small. Therefore, the 
quotient in (4.3) has a convergent expansion in a polydisc D = 
{ ( x ,  y ,  T)E C3:  I x l < p l ,  I y I < p 2 ,  I ~ l < p ~ }  which contains G, if a is sufficiently small. 
Moreover, by Cauchy's inequality, 

ICn.m,k I s M / ( P ; P ? P i )  (4.7) 
where A4 = supDl(y/x)B1/. 

B~ = ( x / y ) [ - y  In x + yc - x ( y  In x )  + (c  + 1 ) y x  - i ( y  In x12  +cy ( y  In x )  

We will need the following explicit terms of expansion (4.6) (assuming x > 0, y 5 0 ) :  

+ ( b  - c 2 ) y 2  - + x 2 ( y  In x )  + (3c + 2)xy ( y  In x )  + (t + + c ) x 2 y  - i x  ( y  In x )  2 

+(b-2c2-2c  - 1 ) x y  2 - & y  I ~ ~ ) ~ - & ~ ( ~  ~ n x ) + ( ~ + ~ c ) x ~ y ] + ~ ( x , y )  

(4.8) 
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where 

c = Jbm In t e-' dt = -0.577 21 

b = $ lo (In t ) 2  e-' dt = 0.989 06 
00 

(4.9) 

As we mentioned earlier the expansion (4.8) has been truncated according to the 
prescription that when we assume y = O(x2) terms in the remainder R become 
O(xs(ln x ) ~ ) .  Note that a term of order xs(ln x ) ~  appears as (x/y)(-i)(y In x ) ~  among 
the explicit terms. The summation indices in the remainder terms must satisfy either 

n +2m +2k > 6  (4.10) 

or 

n + 2 m + 2 k = 6  and k s 2 .  (4.11) 

Moreover, 

~ R ( x ,  y) l sc [xS lnx  +x(y ~ n x ) ~ + x ~ ~ n x ( y  Inx )+x  Inx(y ~ n x ) ~ ]  (4.12) 

for (x/4, y/2) E G, (a  sufficiently small). To explain this estimate we write d = 
( d l ,  d2,  d,) for (n ,  m, k )  and let D be the set of all triples obeying (4.10) and (4.11). 
With each d E D we associate the three lattice points d " )  ( j  = 1, 2, 3) where d ! )  = d k  

if k # j  and d! )  = dk - 1 if k = j ,  and we call a triple d E D 'minimal' if for some i, 
di - 1 2 0 and d"' fZ D. The set of all minimal triples will be denoted by d. If d E b let 
~ ( d )  = {d E D: dk adk for k = I ,  2,3) .  Clearly, the union of all the sets ~ ( d )  equals 
D. Thus on substituting (4.7) in (4.6) and using the fact that a geometric series is 
dominated by its lowest-order term we see that 

(4.13) 

The right-hand side in (4.13) consists of 18 summands. However, since B1 remains 
bounded as y 1 0 (x fixed) c , , ~ , ~ )  = 0 for all n ,  and thus the terms with d = (do, 0,O) can 
be dropped from (4.13). If we now pick any two of the remaining summands and 
divide one by the other, it may happen that the ratio goes to zero uniformly in G, 
as a 1 0. In this sense, for example, the term x(y In x ) ~  (d = (0, 1,2) )  dominates the 
term x2y- ' (y  In x ) ~  (d = (1, 0, 3)) .  Then we can disregard the smaller term in the sum 
(4.13), and modify the constant c instead. By comparing terms in this manner we 
can reduce their number to four which gives (4.12). 

Note that if we let x and y go to zero such that y lnx stays bounded away from 
zero, the last term on the right-hand side in (4.12) is the largest, whereas if we assume 
y = O(x2) it is the smallest. The equation (2.8) can also be written as 

(4.14) 

Recalling that the leading term in C,,,,,(p) is $ p 2  it follows, by a simple continuity 
argument, that (4.14) has a solution U@) = $ p 2  + Ob3). This solution is unique because 
H ( R )  has a unique eigenvalue converging to - 2  as R 1 0 .  This follows from a simple 
perturbation argument (see B 5 ) .  For completeness, we mention that one is not forced 
to resort to perturbation theory here. Instead, one can show that the right-hand side 
in (4.14) is analytic as a function of U in a suitable neighbourhood of zero and then 

U = C,,,,,(p) - ZPU - u2 + u'B. 



2718 M Klaus 

appeal to RouchC's theorem. This argument only applies to solutions that lie in G, 
(i.e. a properly modified set G, if U is complex) whereas the perturbation argument 
is more general. 

To find the expansion of E ( R )  we followed BBS (equations (56)-(59)). A HP-67 
was used to program some lengthy algebraic expressions for the numerical coefficients. 
Therefore, we give some of the coefficients in decimal notation, although they are 
really rational numbers combined with b and c. Choosing the variables s = 2R as in 
BBS the result can be stated in the form 

9 3  

E ( R )  = -2+ 1 anmsn(s2 In s ) ~  +o(s9(1n s ) ~ )  
n = 2  m=O 

(4.15) 

where the non-vanishing coefficients read 
2 2 2 

a20 = J a41=5  a 4 2  = 
2 

U30 = -3 
22 

2 
U31 = -9 

a50 = 0.276 96 

U60 = -0.288 69 U61 =-0.184 64 

a86 = -0.134 29 a40 = m a32 = -h 
a51 = -0.128 67 

~ 7 0 = 0 . 1 7 8  64. 

1 1 
a 3 3  = -243 (= - 53) 

Byers Brown and Powers (1970) found that when E ( R )  is evaluated up to order R 5  
the approximation is good for R less than about 0.2. We had originally hoped to see 
a significant increase or decrease in the 'radius of convergence' if terms up to order 
R9(ln R ) 3  were included, but the numerical evaluation does not provide enough 
evidence for either conclusion. The reason for choosing s and s21ns  as the basic 
parameters is the following. 

Conjecture. E ( R )  has the convergent expansion 

m 

E ( R )  = -2+ 1 bn,,Rn(R2 In R)" 
n.m = O  

(4.16) 

provided R is sufficiently small. 

We have been unable to prove this conjecture. However, our attempts to do so have 
at least convinced us that from among all terms of the form R"(1n R)" only those 
indicated in (4.16) do actually occur. We can prove this conjecture in two special 
situations, namely (i) if B is simply replaced by B1 and (ii) in the Tibbs-Wannier 
model (Chen 1958, Wannier 19431, i.e. when V R ( x )  is replaced by its spherical average. 
In both cases the proof is a direct consequence of the implicit function theorem along 
with suitable substitutions similar to those made in the appendix to Klaus and Simon 
(1980). 

5. Some comments on the united atom approximation 

If the Hamiltonian H ( R )  is written as 
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where 

VR is a small perturbation of H ,  in the sense of relatively bounded operators (respec- 
tively in the sense of quadratic forms if E ai). Therefore, E ( R )  can be expressed as 
an absolutely convergent series 

where 

E"' (4, v R 4 )  E"' = -(4, v R s v R ~ )  10) E = - 2  

~ ' ~ ' = ( 4 ,  v R s v R s v R ~ ) - ( ~ ,  v R s 2 v R 4 ) ( 4 ,  v R 4 )  (5 .5)  

etc. are the well known relations from perturbation theory (Kato 1966). Here 
obeys Hc4 = -24  and S = (Hc +2)- ' (1-4(4 ,  a ) )  is the reduced 

resolvent. Closed expressions for E'"' are known only when n = 1 , 2  (Levine 1974). 
Expanding them yields 

-2+E'1'+E'2'=  -2+f(2R)2-f(2R)3+$&(2R)4-b(2R)51nR +O(R5) (5.6) 

which agrees with (1.2) up to order R3. Thus the missing terms in R 4  and R5 In R 
must be contained in E'"' where n a 3. Of course, one hopes that only n = 3 matters 
and this will indeed be the case. In this connection BBS remark in § E of their paper 
that it appears to be very difficult to predict the order in R of E'"' for the united 
atom treatment. Fortunately, one does not need to know the order exactly; it suffices 
to have an effective estimate, namely 

= 22/3 -1 /2  e-2r 
7r 

(E'"'/ s CRn+l rial. (5.7) 
Incidentally, this estimate is sharp for n = 1 , 2 , 3 .  Inequality (5.7) is a consequence 
of the estimates 

which, since S'/'(-A + 1)ll2 is bounded, need only be proved when S is replaced by 
( -A+ l)-'. Then (5.8) follows from 

IJ(-A+ 1 ) - 1 ' 2 v R 4 ) 1 2  = ( 4 R ,  VR(-A+ 1 ) - ' V & )  

(5.10) 

where in the last step we used scaling. The integral is finite since V R ( X )  = O(Ix at 
infinity. Inequality (5.9) is a consequence of (5.3) if we put E = 1.  Thus X:=4E'")s 
CR' and also (4, V R S ~ V R ~ ) ( ~ ,  V&)S  CR', so that the term R 5  In R must be 
contained in the matrix element 

(4, VRSVRSVR~) .  (5.11) 
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To analyse this expression we use the representations for the kernels of Sl where Sl 
(I = 0,  1 , 2 ,  , . .) denotes the projection of S onto the subspace of angular momentum 
1 (Hameka 1968), and we expand VR in Legendre polynomials. Then we are reduced 
to study certain explicit one-dimensional integrals. In the process we discovered that 
it is relatively easy (although still pretty tedious) to track down the terms in R 5  In R 
compared with those in R 4 .  As a result, we have concentrated on the logarithmic 
terms and we have found the following contributions: 

= (49 

( 5 . 1 2 )  

4 
3(4m + 5)(4m + 3)(4m - 3) (4m - 1) 

x (2R)’ In R ( m  = 1 , 2 , .  . .). ( 5 . 1 3 )  

Summing over m and adding ( 5 . 1 2 )  gives -&2R)’ In R and thus together with (5.6) 
leads to the same coefficient as in ( 1 . 2 ) .  In the course of our investigations we also 
discovered that due to a ‘conspiracy between angular momenta’ in second order, no 
terms in R41nR occur. The only matrix elements containing such terms are 
(4, VS0V4) and (4, VSzV4) and their respective contributions are * & G ? R ) ~  In R.  
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